## References

[1] Beatrice Amrhein, Oliver Gloor, and Roman E. Maeder. Visualizations for mathematics courses based on a computer algebra system. J. Symbolic Computation, 23(5-6):447-452, 1997.
[2] Enrique Arrondo, Juana Sendra, and J. Rafael Sendra. Parametric generalized offsets to hypersurfaces. J. Symbolic Computation, 23(2-3):267285, 1997.
[3] Chandrajit L. Bajaj and Guoliang Xu. Spline approximations of real algebraic surfaces. J. Symbolic Computation, 23(2-3):315-333, 1997.
[4] Nigel Boston. A use of computers to teach group theory and introduce students to research. J. Symbolic Computation, 23(5-6):453-458, 1997.
[5] Adel Bouhoula. Automated theorem proving by test set induction. J. Symbolic Computation, 23(1):47-77, 1997.
[6] B.M. Brown, M.S.P. Eastham, and D.K.R. McCormack. A new algorithm for computing the asymptotic solutions of a class of linear differential systems. J. Symbolic Computation, 23(1):119-131, 1997.
[7] John Cannon and Catherine Playoust. Using the magma computer algebra system in abstract algebra courses. J. Symbolic Computation, 23(5-6):459-484, 1997.
[8] R.M. Corless, D.J. Jeffrey, M.B. Monagan, and Pratibha. Two perturbation calculations in fluid mechanics using large-expression management. J. Symbolic Computation, 23(4):427-443, 1997.
[9] Robert M. Corless and David J. Jeffery. Scientific computing: One part of the revolution. J. Symbolic Computation, 23(5-6):485-495, 1997.
[10] Rida T. Farouki. Conic approximation of conic offsets. J. Symbolic Computation, 23(2-3):301-313, 1997.
[11] Amy Felty and Laurent Théry. Interactive theorem proving with temporal logic. J. Symbolic Computation, 23(4):367-397, 1997.
[12] Alfons Geser. Omega-termination is undecidable for totally terminating term rewriting systems. J. Symbolic Computation, 23(4):399-411, 1997.
[13] Laureano Gonzalez-Vega. Implicitization of paramatric curves and surfaces by using multidimensional newton formulae. J. Symbolic Computation, 23(2-3):137-151, 1997.
[14] Christoph M. Hoffmann and Robert Joan-Arinyo. Symbolic constraints in constructive geometric constraint solving. J. Symbolic Computation, 23(2-3):287-299, 1997.
[15] Hoon Hong. Implicitization of nested circular curves. J. Symbolic Computation, 23(2-3):177-189, 1997.
[16] Hoon Hong. Subresultants under composition. J. Symbolic Computation, 23(4):355-365, 1997.
[17] David P. Jacobs. A course in computational nonassociative algebra. J. Symbolic Computation, 23(5-6):497-502, 1997.
[18] Yuichi Kaji, Toru Fujiwara, and Tadao Kasami. Solving a unification problem under constrained substitutions using tree automata. J. Symbolic Computation, 23(1):79-117, 1997.
[19] Erich Kaltofen. Teaching computational abstract algebra. J. Symbolic Computation, 23(5-6):503-515, 1997.
[20] Eugene M. Luks, Ferenc Rákóczi, and Charles R.B. Wright. Some algorithms for nilpotent permutation groups. J. Symbolic Computation, 23(4):335-354, 1997.
[21] Christopher Lynch. Oriented equational logic programming is complete. J. Symbolic Computation, 23(1):23-45, 1997.
[22] Elizabeth L. Mansfield and Peter A. Clarkson. Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations. J. Symbolic Computation, 23(5-6):517-533, 1997.
[23] Michal Mňuk. An algebraic approach to computing adjoint curves. J. Symbolic Computation, 23(2-3):229-240, 1997.
[24] Michael B. Monagan. Worksheets and notebooks: Can we teach mathematical algorithms with them? J. Symbolic Computation, 23(5-6):535549, 1997.
[25] Robert Nieuwenhuis and Albert Rubio. Paramodulation with built-in ac-theories and symbolic constraints. J. Symbolic Computation, 23(1):121, 1997.
[26] Martin Peternell and Helmut Pottmann. Computing rational parametrizations of canal surfaces. J. Symbolic Computation, 23(2-3):255-266, 1997.
[27] Tomas Recio and J. Rafael Sendra. Real reparametrizations of real curves. J. Symbolic Computation, 23(2-3):241-254, 1997.
[28] Nicolas Robidoux. Computer algebra and interpolation: A lesson plan. J. Symbolic Computation, 23(5-6):551-576, 1997.
[29] Tom Sederberg, Ron Goldman, and Hang Du. Implicitizing rational curves by the method of moving algebraic curves. J. Symbolic Computation, 23(2-3):153-175, 1997.
[30] J. Rafael Sendra and Franz Winkler. Parametrization of algebraic curves over optimal field extensions. J. Symbolic Computation, 23(2-3):191207, 1997.
[31] Gary J. Sherman. Trying to do group theory with undergraduates and computers. J. Symbolic Computation, 23(5-6):577-587, 1997.
[32] William Y. Sit. Mathematica notebooks for a conventional differential equations course. J. Symbolic Computation, 23(5-6):589-623, 1997.
[33] Mark van Hoeij. Rational parametrizations of algebraic curves using a cononical divisor. J. Symbolic Computation, 23(2-3):209-227, 1997.
[34] Sébastien Veigneau. Sp, a package for schubert polynomials realized with the computer algebra system maple. J. Symbolic Computation, 23(4):413-425, 1997.

