References

[1] Alok Aggarwal and Youngcheul Wee. On the symmetric angle-restricted nearest neighbor problem. Inf. Process. Lett., 92(3):121-126, 2004.
[2] E. Bertsch and M.-J. Nederhof. Fast parallel recognition of $l r$ language suffixes. Inf. Process. Lett., 92(5):225-229, 2004.
[3] Byron L.D. Bezerra and Francisco de A.T. de Carvalho. A symbolic approach for content-based information filtering. Inf. Process. Lett., 92(1):45-52, 2004.
[4] Ayelet Butman, Revital Eres, and Gad M. Landau. Scaled and permuted string matching. Inf. Process. Lett., 92(6):293-297, 2004.
[5] Jin-Yi Cai and Robert A. Threlfall. A note on quadratic residuosity and up. Inf. Process. Lett., 92(3):127-131, 2004.
[6] Cezar Câmpeanu and Sheng Yu. Pattern expressions and pattern automata. Inf. Process. Lett., 92(6):267-274, 2004.
[7] Chung-Haw Chang, Cheng-Kuan Lin, Hua-Min Huang, and Lih-Hsing Hsu. The super laceability of the hypercubes. Inf. Process. Lett., 92(1):15-21, 2004.
[8] Ku-Young Chang, Howon Kim, Ju-Sung Kang, and Hyun-Sook Cho. An extension of tyt algorithm for $g f\left(\left(2^{n}\right)^{m}\right)$ using precomputation. Inf. Process. Lett., 92(5):231-234, 2004.
[9] Yu-Wei Chen. An enhanced recursive frequency splitting broadcasting algorithm for near video-on-demand services. Inf. Process. Lett., 92(6):299-302, 2004.
[10] K.S. Cheung. New characterization for live and reversible augmented marked graphs. Inf. Process. Lett., 92(5):239-243, 2004.
[11] S.A. Curtis. Darts and hoopla board design. Inf. Process. Lett., 92(1):53-56, 2004.
[12] George Davie. Characterising the martin-löf random sequences using computably enumerable sets of measure one. Inf. Process. Lett., 92(3):157-160, 2004.
[13] Alfredo de Santis, Anna Lisa Ferrara, and Barbara Masucci. Cryptographic key assignment schemes for any access control policy. Inf. Process. Lett., 92(4):199-205, 2004.
[14] Benjamin Doerr. Global roundings of sequences. Inf. Process. Lett., 92(3):113-116, 2004.
[15] Daniel J. Dougherty and Stanley M. Selkow. The complexity of the certification of properties of stable marriage. Inf. Process. Lett., 92(6):275277, 2004.
[16] Donglei Du. Optimal preemptive semi-online scheduling on two uniform processors. Inf. Process. Lett., 92(5):219-223, 2004.
[17] Eyas El-Qawasmeh. Word prediction using a clustered optimal binary search tree. Inf. Process. Lett., 92(5):257-265, 2004.
[18] Lars Engebretsen. Simplified tight analysis of johnson's algorithm. Inf. Process. Lett., 92(4):207-210, 2004.
[19] John Hershberger. Kinetic collision detection with fast flight plan changes. Inf. Process. Lett., 92(6):287-291, 2004.
[20] Garth Isaak and Darren A. Narayan. A classification of tournaments having an acyclic tournament as a minimum feedback arc set. Inf. Process. Lett., 92(3):107-111, 2004.
[21] Kuen-Fang Jea, Ming-Yuan Chang, and Ke-Chung Lin. An efficient and flexible algorithm for online mining of large itemsets. Inf. Process. Lett., 92(6):311-316, 2004.
[22] Heum-Geun Kang, Jun-Ki Min, Seok-Ju Chun, and Chin-Wan Chung. A compression method for prefix-sum cubes. Inf. Process. Lett., 92(2):99105, 2004.
[23] Owen Kaser. Compressing arrays by ordering attribute values. Inf. Process. Lett., 92(5):253-256, 2004.
[24] Md. Abul Kashem and M. Ziaur Rahman. An optimal parallel algorithm for c-vertex-ranking of trees. Inf. Process. Lett., 92(4):179-184, 2004.
[25] Irit Katriel. On the algebraic complexity of set equality and inclusion. Inf. Process. Lett., 92(4):175-178, 2004.
[26] I. Krasikov and S.D. Noble. Finding next-to-shortest paths in a graph. Inf. Process. Lett., 92(3):117-119, 2004.
[27] Maciej Kurowski. A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett., 92(2):95-98, 2004.
[28] Jens Lechtenbörger. Computing unique canonical covers for simple fds via transitive reduction. Inf. Process. Lett., 92(4):169-174, 2004.
[29] B. Litow and N. Deo. Graph compression and the zeros of polynomials. Inf. Process. Lett., 92(1):39-44, 2004.
[30] Ding Liu. A strong lower bound for approximate nearest neighbor searching. Inf. Process. Lett., 92(1):23-29, 2004.
[31] Jack H. Lutz. Computability versus exact computability of martingales. Inf. Process. Lett., 92(5):235-237, 2004.
[32] Soumen Maity, Amiya Nayak, and Bimal K. Roy. Characterization of catastrophic faults in two-dimensional reconfigurable systolic arrays with unidirectional links. Inf. Process. Lett., 92(4):189-197, 2004.
[33] I. Nunes. Method redefinition - ensuring alternative behaviors. Inf. Process. Lett., 92(6):279-285, 2004.
[34] Tatjana Petković, Miroslav Ćirić, and Stojan Bogdanović. Minimal forbidden subwords. Inf. Process. Lett., 92(5):211-218, 2004.
[35] Jeong Min Shim, Seok Il Song, Jae Soo Yoo, and Young Soo Min. An efficient cache conscious multi-dimensional index structure. Inf. Process. Lett., 92(3):133-142, 2004.
[36] Igor E. Shparlinski. On the uniformity of distribution of the decryption exponent in fixed encryption exponent rsa. Inf. Process. Lett., 92(3):143147, 2004.
[37] San Skulrattanakulchai. Acyclic colorings of subcubic graphs. Inf. Process. Lett., 92(4):161-167, 2004.
[38] Andrzej Szepietowski and Monika Targan. A note on the oriented chromatic number of grids. Inf. Process. Lett., 92(2):65-70, 2004.
[39] Ismail H. Toroslu and Ahmet Cosar. Dynamic programming solution for multiple query optimization problem. Inf. Process. Lett., 92(3):149-155, 2004.
[40] Gabriel Valiente. Trading uninitialized space for time. Inf. Process. Lett., 92(1):9-13, 2004.
[41] Amit Weisman, L. Paul Chew, and Klara Kedem. Voronoi diagrams of moving points in the plane and of lines in space: Tight bounds for simple configurations. Inf. Process. Lett., 92(5):245-251, 2004.
[42] Aaron Windsor. A simple proof that finding a maximal independent set in a graph is in nc. Inf. Process. Lett., 92(4):185-187, 2004.
[43] Bang Ye Wu, Zheng-Nan Huang, and Fu-Jie Zhan. Exact algorithms for the minimum latency problem. Inf. Process. Lett., 92(6):303-309, 2004.
[44] Atsuko Yamaguchi, Kiyoko F. Aoki, and Hiroshi Mamitsuka. Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees. Inf. Process. Lett., 92(2):57-63, 2004.
[45] Masafumi Yamashita, Ichiro Suzuki, and Tiko Kameda. Searching a polygonal region by a group of stationary k-searchers. Inf. Process. Lett., 92(1):1-8, 2004.
[46] Xiaofan Yang, David J. Evans, Hongjian Lai, and Graham M. Megson. Generalized honeycomb torus is hamiltonian. Inf. Process. Lett., 92(1):31-37, 2004.

